
https://bit.ly/pmt-edu-cc https://bit.ly/pmt-cc

CAIE Computer Science IGCSE
8 - Programming
Advanced Notes

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

This work by PMT Education is licensed under CC BY-NC-ND 4.0

8.1 Programming concepts

Variables and constants are ways of storing data – however, the data stored in a variable
may change throughout the execution of a program, whilst the data stored in a constant
must stay the same.

Statements Description Examples

Variable
Declaration

Creates a variable to store data. Example: name = "Alex"

Constant
Declaration

A value that does not change
while the program runs. Often
given fully uppercase identifiers.

Example: PI = 3.14

Assignment Setting or updating a value in a
variable.

Example: score = score + 10

What Are Data Types?

In programming, a data type defines the kind of data a variable or constant can hold. It tells
the program how the data will be stored, processed, and displayed.

Common Data Types

Term Description Examples

Integer (int) Whole numbers only, no decimals 5, -20, 0

Real (float)

Numbers that include a
fractional/decimal part. Also called float
in some languages

3.14, -0.5, 99.99

Boolean (bool) Often used for conditions and logic,
only has two states

True or False

Character (char) A single symbol or letter, enclosed in
single quotes for most programming
languages

'A', 'a', '#'

String (str) A sequence of characters, enclosed in
double quotes for most programming
languages

"Hello", "123", "£$%"

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

What Is Input/Output in Programming?

Input/Output (I/O) refers to how a program interacts with the outside world — specifically
how it:

●​ Receives data from the user (input)​

●​ Displays data or information to the user (output)

Input (Getting Data from the User)

Used to collect data that a program requires to process. Typically stored in a variable after
being entered.

Example (Pseudocode):

Example (Python):

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Output (Displaying Data)

Used to show messages, results, or prompts to the user.

Example (Pseudocode):

Example (Python):

Notes:

●​ Outputs can display text, numbers, or variable values.​

●​ Inputs are usually strings by default and may need type conversion (e.g.,
int(input(...)) in Python).​

Input/output operations are often used with selection and iteration, such as branching
depending on the data entered or prompting repeatedly until valid data is entered.​

What Is Structured Programming?

Structured programming is a method of writing clear, modular, and easy-to-understand code
using three core principles:

1.​ Sequence – instructions are executed in the order they were written​

2.​ Selection – decisions (IF–ELSE, CASE)​

3.​ Iteration – repetition (WHILE, FOR)

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Selection Statements

Selection statements are used to determine program flow, i.e. making decisions in a
program, usually done using if–else statements or case statements.

●​ If–Else Statement:

height = 120

if height >= 150:
​ print(“You can ride the rollercoaster”)
else:
​ print(“You are too short to ride”)

●​ Case Statement:

​ day = "Monday"

match day:
 case "Monday":
 print("Start of the week")
 case "Friday":
 print("End of the week")
 case _:
 print("A regular day")

Note: case_ : is used to represent anything other than the previously stated cases. In this
example, it represents any input other than Monday or Friday.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Iteration Statements

Iteration is used to repeat a block of instructions within a program, this can either be:

●​ Count-controlled (for loop) to repeat a certain number of times:

for i in range(10):
​ print(“Hello World”)

●​ Pre-condition (while loop) to repeat until a condition is met by checking the condition
before the loop

num = 0

while num <= 5:
​ print(num)
​ num = num + 1

●​ Post-condition (do…while loop) to repeat until a condition is met by checking the
condition at the end of the loop

num = 0

while True:
​ print(num)
​ num = num + 1
​ if number > 5: # Condition is checked at the end
​ ​ break

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Totalling and Counting

Totalling means to keep a running total (a sum) of numbers as they are inputted or
processed. This is usually done using iteration to add numbers as you go along.

Example:

sum = 0
for i in range(5):

sum = sum + 2

print(“The total is: “ + sum)

Counting is keeping track of how many times an event has occurred, such as counting how
many times a specific item is found in an array.

Example:

colours = [“blue”, “red”, “red”, “yellow”, “red”]
count = 0

for i in range(len(colours)):
​ if colours[i] == “red”: # checking if red is in the array
​ ​ count = count + 1

print(count)

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

What Is String Handling?

String handling refers to the operations you can perform on strings (text data). Such as
measuring length or extracting substrings.

A string is a sequence of characters, e.g. "hello123!"

Key String Operations

Operation Description Example

length Returns the number of
characters in a string

length("hello") → 5

substring Extracts a sequence of
characters within a string

substring("computer", 0, 2) →
"com"

upper Converts a string to
uppercase

upper(“hello”) → “HELLO”

lower Converts a string to
lowercase

lower(“Milly”) → “milly”

What Are Arithmetic Operations?

Arithmetic operations are the basic mathematical calculations that can be performed in a
programming language. These are essential for processing numerical data in algorithms and
programs.

Standard Arithmetic Operators

Operation Symbol Example Result

Addition + 3 + 2 5

Subtraction - 7 - 4 3

Multiplication * 5 * 3 15

Real Division / 10 / 4 2.5

Exponentiation ^ 3 ^ 2 9

Modulo % 10 % 3 1

Floor Division // 7 // 3 2

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

What Are Relational Operations?

Relational operations are used to compare two values. They return a Boolean value:

●​ True if the comparison is correct​

●​ False if it is not

These operations are commonly used in conditions, such as IF statements and loops.

Relational Operators

Operation Symbol in most
languages

Example Result

Equal to == 5 == 5 True

Not equal to != or <> 3 != 4 True

Less than < 2 < 5 True

Greater than > 6 > 7 False

Less than or equal to <= 5 <= 5 True

Greater than or equal to >= 7 >= 10 False

What Are Logical Operators?

Logical operators use Boolean values (True or False). They are used in conditions to
control the flow of programs.

Logical Operators Explained

Operator Description Example Result

NOT Reverses the Boolean value NOT True False

AND Returns True if both input conditions are true True AND
True

True

OR Returns True if either input condition is true True OR
False

True

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Nested Statements

Selection and iteration statements can be nested (indented) within each other to provide
more complex decision-making within a program. However, nested iteration does massively
increase the complexity of a program.

age = 20
has_id = True

if age >= 18: # Outer if
 if has_id: # Nested if
 print("You are allowed to enter.")
 else:
 print("You need an ID to enter.")
else:
 print("You are not old enough to enter.")

What Is a Subroutine?

A subroutine is a block of code that performs a specific task and can be reused by calling
it by name at any point in a program.

Types:

●​ Procedure: performs an action and does not return a value​

●​ Function: performs an action and returns a value​

Example (Pseudocode):

Parameters and Return Values

●​ Parameters allow data to be passed into a subroutine​

●​ Return values allow data to be passed back to the main program
○​ The returned value should be assigned to a variable in the main program

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Library Functions

Libraries can be used to provide an extensive set of tools to be used within your programs,
such as creating random numbers.

●​ MOD – Finds the remainder after a division:

​ 17 MOD 5 = 2

●​ DIV – Finds only the whole number after a division:

​ 20 DIV 3 = 6

●​ ROUND – Rounds a decimal number to the nearest integer, or a given number of
decimal places:

​ ROUND(3.9) = 4

​ ROUND(5.02) = 5

​ ROUND(3.14159, 2) = 3.14

●​ RANDOM – Generates a random number

​ RANDOM(1, 6) → any number between 1 and 6 (inclusive)

Creating Maintainable Programs

It is important to create programs in a clear and structured way so that they can be
maintained and improved upon in the future. Programmers can revisit their code and
understand it immediately and make any changes necessary.

●​ Meaningful identifier names

Using clear, descriptive names for variables, constants, and subroutines helps to
improve the readability and understanding of what the code does.

Example: Use totalMarks instead of x.

●​ Comments

Comments can help programmers understand the purpose of a section of code and
give insight into the original developer’s intentions

●​ Procedures / Functions (Subroutines)

Can be called many times without having to repeat code. This makes testing and
their use easier as they only have to be debugged once.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

8.2 Arrays

What is an Array?

●​ A collection of similar data items (elements) stored under a single name.​

●​ Each item is accessed using an index (position number).​

Characteristics:

●​ Items must be of the same data type.​

●​ Indexing usually starts at 0, but can also start at 1.​

One-Dimensional Array (1D)

●​ A single list of items.​

●​ Example:​
 scores = [10, 20, 30]​
 scores[1] → 20 # 0-based indexing​

Two-Dimensional Array (2D)

●​ An array of arrays (like a table or grid).​

●​ Example:

​

seating[1][0] → “Cara” # 0-based indexing

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Iterating through Arrays

The data in an array can be read through using iteration, as well as writing values to an array
using iteration.

●​ Reading from an array:

colours = [“blue”, “red”, “red”, “yellow”, “red”]

for item in colours:
​ print(item)

This would print each item in order.

●​ Writing to an array:

evenNumbers = []

for x in range(1, 10):
evenNumbers.append(x * 2) # [2, 4, ...]​

For a 2D array, it is often beneficial to use nested iteration to read from it. This is because
the first level of iteration can be used to iterate through the sub-arrays; the second, nested
iteration can then be used to iterate through each element of the sub-arrays.

An example using the array seating, shown above:

seating = [

[“Alice”, “Bob”],

[“Cara”, “Dan”]

]

for x in range(0,1):

​ for y in range(0,1):

​ ​ print(seating[x][y])

The code above would print Alice, Bob, Cara, Dan in the order given.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

8.3 File handling

File Handling

File handling is useful as you can permanently save data used in a program, as well as read
external data. A file handling variable is required to access the file itself, and the file must be
opened in the desired mode, i.e. “write” mode or “read” mode.

Files should be closed after they have been accessed, this ensures that any changes made
to the file are committed to memory and saved.

●​ Reading a line from a file:

myFile = open(“hello.txt”, “r”) # r is read mode

print(myFile.readline())

​ myFile.close()

●​ Writing a line to a file:

myFile = open(“hello.txt”, “w”) # w is read mode

myFile.write(“Hello World”)

​ myFile.close()

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

	What Are Data Types?
	What Is Input/Output in Programming?
	Input/Output (I/O) refers to how a program interacts with the outside world — specifically how it:
	●​Receives data from the user (input)​
	●​Displays data or information to the user (output)
	Input (Getting Data from the User)
	Used to collect data that a program requires to process. Typically stored in a variable after being entered.
	Example (Pseudocode):

	
	
	Output (Displaying Data)
	Notes:
	Structured programming is a method of writing clear, modular, and easy-to-understand code using three core principles:
	1.​Sequence – instructions are executed in the order they were written​
	2.​Selection – decisions (IF–ELSE, CASE)​
	3.​Iteration – repetition (WHILE, FOR)
	
	
	Selection Statements
	Selection statements are used to determine program flow, i.e. making decisions in a program, usually done using if–else statements or case statements.
	Iteration is used to repeat a block of instructions within a program, this can either be:
	●​Count-controlled (for loop) to repeat a certain number of times:
	●​Pre-condition (while loop) to repeat until a condition is met by checking the condition before the loop
	
	
	Totalling and Counting
	Totalling means to keep a running total (a sum) of numbers as they are inputted or processed. This is usually done using iteration to add numbers as you go along.
	
	What Is String Handling?
	String handling refers to the operations you can perform on strings (text data). Such as measuring length or extracting substrings.
	A string is a sequence of characters, e.g. "hello123!"
	
	What Are Arithmetic Operations?
	Arithmetic operations are the basic mathematical calculations that can be performed in a programming language. These are essential for processing numerical data in algorithms and programs.
	Standard Arithmetic Operators
	What Are Relational Operations?
	Relational operations are used to compare two values. They return a Boolean value:
	●​True if the comparison is correct​
	●​False if it is not
	These operations are commonly used in conditions, such as IF statements and loops.
	Relational Operators
	
	What Are Logical Operators?
	Logical operators use Boolean values (True or False). They are used in conditions to control the flow of programs.
	Logical Operators Explained
	Nested Statements
	
	What Is a Subroutine?
	Example (Pseudocode):

	Parameters and Return Values
	●​Parameters allow data to be passed into a subroutine​
	●​Return values allow data to be passed back to the main program
	○​The returned value should be assigned to a variable in the main program
	Library Functions
	Creating Maintainable Programs
	What is an Array?
	Characteristics:
	One-Dimensional Array (1D)
	Two-Dimensional Array (2D)

	Iterating through Arrays
	File Handling

